	STUDY MODULE D	ESC				
Name of the module/subject Structural Analysis			Code 1010102111010113701			
Field of study			Profile of study (general academic, practical)		Year /Semester	
CIVII Engineering Second-cycle Studies			(DI dK)		1/1	
Liective path/specialty	-		polish		obligatory	
Cycle of study:	Cycle of study:		Form of study (full-time,part-time)			
Second-cycle studies			full-time			
No. of hours					No. of credits	
Lecture: 30 Classe	es: 15 Laboratory: -	F	Project/seminars:	15	3	
Status of the course in the study program (Basic, major, other) (brak)			iniversity-wide, from another	field) (bra	ak)	
Education areas and fields of science and art					ECTS distribution (number	
technical sciences					3 100%	
Responsible for subj	ect / lecturer:					
Przemysław Litewka email: przemyslaw.litewk tel. 61-6652468 Budiwnictwa i Inżynierii Ś	a@gmail.com Srodowiska					
Prerequisites in tern	ns of knowledge, skills an	nd so	cial competencies	:		
1 Knowledge -Knows analytical methods of computation of internal forces and displacements in sta					splacements in statically	
	-Has basic knowledge concernir bar structures.	ng bu	ckling of compression me	embe	rs and stability loss of plane	
	-Has knowledge concerning the	e stres	s and strain states in me	mber	s cross sections.	
2 Skills	-Can calculate forces and displa structures.	acements in statically determinate and indeterminate bar				
	-Can calculate stresses and stra	ains in	members cross sections	5.		
3 Social competencies	-Can describe the calculations c	carried	d out			
Assumptions and ob	jectives of the course:					
1. Enhancement of knowled	ge concerning classical methods o	of ana	lysis of bar structures.			
2. Getting acquainted with n	natrix methods of analysis of static	cs and	stability of bar structures	6.		
3. Getting acquainted with s	ome methods of analysis of space	e girde	ers			
Study outco	mes and reference to the	edu	cational results fo	r a f	ield of study	
Knowledge:						
1. Knows analytical and nur	nerical methods of calculation of in	nterna	I forces and displacemen	its in	bar structures, also with the	
2. Knows methods of analysis of initial stability of bar structures - [K W03]						
3. Knows foundations conce	erning forming and non-linear beha	aviour	of cable structures - [K_	W03,	K_W09]	
4. Knows foundations of the	finite strip method - [K_W03]					
Skills:						
1. Can calculate by various [K_U04, K_U06, K_U13]	methods internal forces and displa	aceme	ents in bar structures also	with	in the second order theory -	
2. Can calculate the critical load and the mode of stability loss for plane bar structures - [K_U04, K_U06]						
3. Can apply the Newton-Raphson method in the analysis of geometrically non-linear cable structures - [K_U04, K_U06]						
4. Can cruically assess the results of static and stability analysis of bar structures - [N_007]						

1. Is responsible for the correctness of the analysis carried out - [K_K02]

2. Can describe in writing the calculations and draw the appropriate conclusions - [K_K10]

Assessment methods of study outcomes

Lectures and example classes ? two identical marks are attributed basing on the results of two written tests checking the knowledge and problem solving skills

Test No.1 ? Points 1 ? 4 from the Content section ? 50%

Test No. 2 ? Points 5 ? 8 from the Content section ? 50%

Exercise classes ? one mark is attributed basing on three individual exercises with a written assessment of related knowledge and skills

Ex. No.1 ? Statically indeterminate curved beams ? flexibility method with numerical integration ? 33%

Ex. No. 2 ? Static analysis of plane frames ? matrix version of stiffness method ? 33%

Ex. No. 3 ? Initial stability and static analysis with large axial forces for plane frames ? matrix method ? 33%

Course description

1. Calculation of internal forces and displacements in curved beams. Analytical integration for circular beams and numerical integration for other geometry.

2. Calculation of internal forces and displacements in space frames.

3. Enhancement of the range of analytical methods of analysis of bar structures ? Hardy-Cross method, mixed

method. Influence of elastic supports, temperature change and imposed support displacements.

4. Matrix version of the stiffness method in plane and space frames and trusses.

5. Matrix analysis of statics for plane frames with the influence of large axial forces ? the second order theory.

6. Initial stability of plane frames ? the matrix approach.

7. Calculation of internal forces and displacements in geometrically non-linear cable structures.

8. Foundations of the finite strip method in the analysis of space girders

Basic bibliography:

1. Electronic textbook ? see the links Materials at: http://www.ikb.poznan.pl/przemyslaw.litewka/strana. html

2. Selected problems of advanced structural mechanics (in Polish: Wybrane zagadnienia zaawansowanej mechaniki budowli), P. Litewka, R. Sygulski, Wydawnictwo Politechniki Poznańskiej, Poznań, 2012

Additional bibliography:

1. Computer Analysis of Structural Systems, J. F. Fleming, Mc Graw - Hill, 1989

2. Structural Analysis, R. C. Coates, M. G. Coutie, F. K. Kong, Van Nostrand Reinhold, 1988

3. Structural mechanics ? computer approach (in Polish: Mechanika budowli - ujęcie komputerowe), vol. 1, 2 i 3, Z. Waszczyszyn et al., Arkady, Warszawa, 1995

4. Cheung YK. Finite Strip Method in Structural Analysis. Pergamon Press (1976)

Result of average student's workload

Activity	Time (working hours)
1. Exercise No.1	5
2. Exercise No. 2	5
3. Exercise No. 3	10
4. Preparation to Test No.1	12
5. Preparation to Test No.2	8

Student's workload

Source of workload	hours	ECTS
Total workload	100	3
Contact hours	60	2
Practical activities	0	0